
Journal of Computational Physics 225 (2007) 1100–1124

www.elsevier.com/locate/jcp
A transient higher order compact scheme for incompressible
viscous flows on geometries beyond rectangular

Swapan K. Pandit *, Jiten C. Kalita, D.C. Dalal

Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati 781 039, India

Received 26 November 2005; received in revised form 16 January 2007; accepted 18 January 2007
Available online 30 January 2007
Abstract

In this paper, we propose an implicit high-order compact (HOC) finite-difference scheme for solving the two-dimen-
sional (2D) unsteady Navier–Stokes (N–S) equations on irregular geometries on orthogonal grids. Our scheme is second
order accurate in time and fourth order accurate in space. It is used to solve three pertinent fluid flow problems, namely,
the flow decayed by viscosity, the lid-driven square cavity and the flow in a constricted channel. It is seen to efficiently
capture both transient and steady-state solutions of the N–S equations with Dirichlet as well as Neumann boundary con-
ditions. Apart from including the good features of HOC schemes, our formulation has the added advantage of capturing
transient viscous flows involving free and wall bounded shear layers which invariably contain spatial scale variations.
Detailed comparison data produced by the scheme for all the three test cases are provided and compared with analytical
as well as established numerical results. Excellent comparison is obtained in all the cases.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The governing equations representing the 2D unsteady incompressible viscous flow of a fluid are the N–S
equations which, in non-dimensional primitive variable formulation, can be written as
0021-9

doi:10

* Co
E-m
ou
ox
þ ov

oy
¼ 0; ð1Þ

ou
ot
þ u

ou
ox
þ v

ou
oy
¼ � oP

ox
þ 1

Re
r2u; ð2Þ

ov
ot
þ u

ov
ox
þ v

ov
oy
¼ � oP

oy
þ 1

Re
r2v; ð3Þ
991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

.1016/j.jcp.2007.01.016

rresponding author. Tel.: +91 361 258 2615; fax: +91 361 258 2649.
ail addresses: swapan@iitg.ernet.in (S.K. Pandit), jiten@iitg.ernet.in (J.C. Kalita), durga@iitg.ernet.in (D.C. Dalal).

mailto:swapan@iitg.ernet.in
mailto:jiten@iitg.ernet.in
mailto:durga@iitg.ernet.in


S.K. Pandit et al. / Journal of Computational Physics 225 (2007) 1100–1124 1101
where Re is the Reynolds number, P is the pressure and u, v are the velocity components along x- and y-direc-
tions respectively. Alternatively the streamfunction w(x,y, t) and the vorticity f(x,y, t) can be defined as
u ¼ ow
oy
; v ¼ � ow

ox
; ð4Þ
and
f ¼ ov
ox
� ou

oy
: ð5Þ
With these, the streamfunction–vorticity (w–f) form of the N–S Eqs. (1)–(3) can be written as
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This w–f formulation has major advantages over the primitive variable form: firstly, it satisfies the continuity
equation automatically and secondly, it decouples the pressure calculation from the velocity calculation. In the
process, it also eliminates two computational difficulties, namely, finding (i) the correct boundary condition
for pressure, and (ii) an explicit pressure equation satisfying the incompressibility constraint.

The past few decades have seen the development of many numerical schemes [3,4,7,9,12,16,19,20,22–
24,26,27,29,32–34,37,40–43] to solve the N–S equations both in the primitive variables (1)–(3) as well as
w–f ((6) and (7)) formulations. Some of these schemes utilize grid points located only directly adjacent to the
node about which the differences are taken resulting in a formula involving a 9-point compact stencil for
2D cases. Off late, HOC finite-difference schemes based on 9-point compact stencil [15,16,19–21,29–
32,34,40] for the computation of incompressible viscous flows are gaining popularity because of their advan-
tages associated with high-order accuracy coupled with compact difference stencils. However, majority
[15,16,20,21,29,31,32,34] of these HOC approaches on 9-point stencil are confined to steady flow calculations
mostly on uniform space grids. As such these schemes could not fully exploit the advantages associated with
using non-uniform grids, particularly that of mesh grading to resolve smaller scales in the regions of large gra-
dients in the physical domain. Recently, Spotz and Carey [39], Zhang et al. [12], Kalita et al. [20], and Mancera
[34] have developed some HOC schemes on non-uniform grids for the 2D convection–diffusion equations. Of
these, the application of first two were limited to only linear problems whereas the third one, which used no
transformation from the physical to the computational plane could accurately capture steady incompressible
viscous flows governed by N–S equations, however, the last one based on Gupta’s [15,16] idea is confined to
steady flow calculations. Also, whenever there has been attempts to develop HOC scheme for the transient
flows, they are confined invariably to uniform space grids [3,13,15,16,19,30]. Although, there exist solutions
[2,27,36] of unsteady N–S equations using higher order schemes on non-uniform grids, these schemes could
not be termed as compact in true sense; the stencil used in these schemes extends beyond one step length away
from the point about which finite differences are taken.

In the present study we propose an HOC scheme based on 9-point compact stencil for the transient, spa-
tially second order quasi-linear partial differential equation without the mixed-derivative term. The scheme
which can be applied to both convection–diffusion and reaction–diffusion equations, can also be easily accom-
modated into solving equations of the N–S type with slight adjustment of the convection coefficients. It may
be noted that application of almost all the schemes mentioned above was confined only to rectangular physical
domains. The proposed scheme works equally efficiently on problems described on both rectangular as well as
other curvilinear coordinate settings. It is implicit, second order accurate in time and fourth order accurate in
space. It handles both Dirichlet and Neumann boundary conditions with ease. To validate the scheme, it is
first applied to the problem of flow decayed by viscosity having analytical solutions and, then to the classical
lid-driven square cavity problem. However, the power of the scheme is better realized when applied to capture
the flow in a constricted channel on complex geometrical settings. We compare our numerical results with
both analytical and established numerical results, and excellent match is obtained in all the cases.
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The paper is organized in the following way: Section 2 describes the mathematical formulation and the
numerical method, Section 3 discusses the solution of algebraic systems, Section 4 deals with the numerical
experiments and Section 5, the conclusions.

2. Basic formulations and discretization procedure

All Eqs. (2), (3), (6) and (7) can be put under the same umbrella of the two-dimensional time dependent
second order equation
l
o/
ot
þ a

o2/
ox2
þ b

o2/
oy2
þ c

o/
ox
þ m

o/
oy
þ x/ ¼ h; ð8Þ
where l is constant and h is the source term.

2.1. Transformation of the governing equations

We now briefly discuss the transformation
x ¼ xðn; g; tÞ; y ¼ yðn; g; tÞ; ð9Þ
from the physical x–y plane to the computational n–g plane which is used to convert a complicated grid into a
simple, uniform Cartesian grid. Under this transformation, Eq. (8) becomes
l
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in the computational plane
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J 2
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nÞ;

cðn; g; tÞ ¼ ĉ
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þ xgððb̂x2
g þ ây2
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Here, J ¼ xnyg � ynxg; â; b̂; ĉ; m̂; x̂; ĥ are the transformed forms of the coefficients a, b, c, m, x, h respectively and
/̂ðn; g; tÞ is the transformed form of /(x,y, t) in (n,g) plane.

2.2. Discretization in the transformed plane

Assuming the transformed domain to be rectangular and constructing on it a uniform rectangular mesh of
steps h and k in the n- and g-directions respectively, the standard central difference approximation to Eq. (10)
at the ði; jÞth node is given by
ldþt /̂jni;j þ ai;jd
2
n/̂

n
i;j þ gi;jdndg/̂

n
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2
g/̂
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n
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n
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n
i;j � T n

i;j ¼ f n
i;j; ð12Þ
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where /̂i;j denotes /̂ðni; gjÞ; dn; d
2
n and dg; d

2
g are the first and second order central difference operators along

n- and g-directions respectively, and dndg is the mixed second order central difference operator. The truncation
error T n

i;j is given by
T n
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To obtain a fourth order spatial compact formulation for (12), each of the derivatives of the leading terms of
(13) are compactly approximated [32] to O(h2,k2). In order to accomplish this, the original PDE of Eq. (10) is
treated as an auxiliary relation that can be differentiated to obtain expressions for higher derivatives. For
example, successive differentiation of (10) with respect to n yields
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Expressions for o3/̂
og3 and b o4/̂

og4 can be found in a similar way. It is seen that the expressions for the fourth order

derivatives (for example, see Eq. (15)) contain mixed-derivative terms like o4/̂
on3og

;
o4/̂

onog3 etc. which cannot be
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Fig. 1. The unsteady HOC computational (9,9) stencil in ngt-space.
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approximated compactly on the stencil shown in Fig. 1. To overcome this difficulty, the transformation can be
chosen in such a way that the coefficient g of the mixed-derivative term appearing in Eq. (10) becomes zero.
This can be accomplished by choosing an orthogonal grid or conformal mapping [1]. On considering such a
grid or transformation, and using central difference for space derivatives and forward temporal difference with
uniform step length Dt, Eq. (12) can be written as
l dþt /̂n
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i;j þ c�i;jdnd
þ
t /̂n

i;jÞ þ
k2

12
ðd2

gd
þ
t /̂n

i;j þ d�i;jdgd
þ
t /̂n

i;jÞ
� �
þ A0i;jd

2
n/̂

n
ij þ G0i;jdndg/̂

n
i;j þ B0i;jd

2
g/̂

n
i;j þ C0i;jdn/̂

n
i;j þ D0i;jdg/̂

n
i;j þ H 0i;j/̂

n
i;j

þ 1

12
½ðk2ai;j þ h2bi;jÞd2

nd
2
g/̂

n
i;j þ fh2di;j þ k2ð2dgai;j þ d�i;jai;jÞgd2

ndg/̂
n
i;j

þ fk2ci;j þ h2ð2dnbi;j þ c�i;jbi;jÞgdnd
2
g/̂

n
i;j� ¼ F 0ni;j þOðDt; h4; k4Þ; ð16Þ
where
c�i;j ¼
ci;j � 2dnai;j

ai;j
;

d�i;j ¼
di;j � 2dgbi;j

bi;j
;

A0i;j ¼ ai;j þ
h2

12
½ðd2

nai;j þ 2dnci;j þ pi;jÞ þ c�i;jðdnai;j þ ci;jÞ� þ
k2

12
½d�i;jdgai;j þ d2

gai;j�;

B0i;j ¼ bi;j þ
h2

12
½c�i;jdnbi;j þ d2

nbi;j� þ
k2

12
½ðd2

gbi;j þ 2dgdi;j þ pi;jÞ þ d�i;jðdgbi;j þ di;jÞ�;

C0i;j ¼ ci;j þ
h2

12
½d2

nci;j þ 2dnpi;j þ c�i;jðdnci;j þ pi;jÞ� þ
k2

12
½d2

gci;j þ d�i;jdgci;j�;

D0i;j ¼ di;j þ
h2

12
½d2

ndi;j þ c�i;jdndi;j� þ
k2

12
½d2

gdi;j þ 2dgpi;j þ d�i;jðdgdi;j þ pi;jÞ�;

G0i;j ¼
h2

12
½2dndi;j þ c�i;jdi;j� þ

k2

12
½2dgci;j þ d�i;jci;j�;

H 0i;j ¼ pi;j þ
h2

12
½d2

npi;j þ c�i;jdnpi;j� þ
k2

12
½d2

gpi;j þ d�i;jdgpi;j�;

F 0i;j ¼ fi;j þ
h2

12
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We now introduce a weighted average parameter l through the approximation of the time derivative
o/̂
ot such

that tl = (1 � l)t(n) + lt(n+1) where 0 6 l 6 1. Varying l yields different schemes of different time accuracies.
With these, Eq. (16) can be put in the form
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ri�1;j�1 ¼ ð6hkG0i;j þ 2X i;j � kY i;j � hZi;jÞ; qi�1;j�1 ¼ 0;

ri;j�1 ¼ ð24h2B0i;j � 12h2kD0i;j � 4X i;j þ 2kY i;jÞ; qi;j�1 ¼ lð2� kd�i;jÞ;
riþ1;j�1 ¼ ð�6hkG0i;j þ 2X i;j � kY i;j þ hZi;jÞ; qiþ1;j�1 ¼ 0;

ri�1;j ¼ ð24k2A0i;j � 12hk2C0i;j � 4X i;j þ 2hZi;jÞ; qi�1;j ¼ lð2� hc�i;jÞ;
ri;j ¼ ð�48k2A0i;j � 48h2B0i;j þ 24h2k2H 0i;j þ 8X i;jÞ; qi;j ¼ 16l;

riþ1;j ¼ ð24k2A0i;j þ 12hk2C0i;j � 4X i;j � 2hZi;jÞ; qiþ1;j ¼ lð2þ hc�i;jÞ;
ri�1;jþ1 ¼ ð�6hkG0i;j þ 2X i;j þ kY i;j � hZi;jÞ; qi�1;jþ1 ¼ 0;

ri;jþ1 ¼ ð24h2B0i;j þ 12h2kD0i;j � 4X i;j � 2kY i;jÞ; qi;jþ1 ¼ lð2þ kd�ijÞ;
riþ1;jþ1 ¼ ð6hkG0i;j þ 2X i;j þ kY i;j þ hZi;jÞ; qiþ1;jþ1 ¼ 0;
in which
X i;j ¼ h2bi;j þ k2ai;j;

Y i;j ¼ h2di;j þ k2ð2dgai;j þ d�i;jai;jÞ;
Zi;j ¼ h2ð2dnbi;j þ c�i;jbi;jÞ þ k2ci;j:
Thus Eq. (17) becomes the O((Dt)s,h4,k4) HOC finite-difference approximation for (10) on the transformed
plane. The order of accuracy is preserved in the physical plane if the transformation function is smooth en-
ough [8,18]. Accordingly, we have chosen our transformation function in such a way that the order of accu-
racy is preserved as can be seen from Tables 2 and 8.

It should be noted that for l = 0, the computational stencil requires nine points at the nth and five points at
(n + 1)th time level resulting in what may be termed as a (9,5) scheme. Similarly l = 0.5 and l = 1 yield a (9, 9)
and a (5,9) scheme respectively. The temporal order of accuracy s is two for the (9,9) scheme and one for the
other two. Throughout our computations, we have used the (9,9) scheme (see the corresponding stencil in
Fig. 1).
3. Solution of algebraic systems

We now discuss the solution of algebraic systems associated with the newly proposed finite-difference
approximations. The system of Eq. (17) can be written in matrix form as
AUnþ1 ¼ fðUnÞ; ð18Þ
where the coefficient matrix A is an asymmetric sparse matrix. For a grid of size m · n, A has dimension mn,
and Un+1 and f(Un) are mn-component vectors.

The next step now is to solve Eq. (17) with iterative methods. As the coefficient matrix A is not generally
diagonally dominant, conventional iterative methods such as Gauss–Seidel cannot be used. On uniform grids,
some of the associated matrices are symmetric and positive definite, which allows algorithms like conjugate-
gradient (CG) [42] to be used. As non-uniform grid invariably leads to non-symmetric matrices, in order to
solve these systems the biconjugate-gradient stabilized method (BiCGStab) [42] is used here without
preconditioning.

To solve the N–S equations using the proposed scheme, we have used the w–f formulations and employed
an outer-inner iteration procedure. In a typical outer temporal cycle, we solve the transformation of (7) using
(17) with l = Re, a = �1, b = �1, c = uRe, m = vRe, x = 0, h = 0 in (10). Then we solve the transformation of
(6) using the steady-state form of (17) with l = 0, a = �1, b = �1, c = 0, m = 0, x = 0, h = f in (10). For both
the vorticity and streamfunction equation, BiCGStab is used, which constitutes the inner iterations. Once (6) is
solved, u and v in (4) can be approximated compactly up to fourth order accuracy using the following HOC
form
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ui;j ¼ � xg

J
dnw�

h2

6

1

a
½dnf � ðdnaþ cÞðd2

nwÞ � ðdng þ dÞðdndgwÞ � gðd2
ndgwÞ � ðdnbÞðd2

gwÞ
���

�bðdnd
2
gwÞ � ðdncÞðdnwÞ � ðdndÞðdgwÞ � pðdnwÞ � wðdnpÞ�

��
þ xn

J
dgw�

k2

6

1

b
½dgf � ðdgbþ dÞðd2
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2
gwÞ

��
�ðdgaÞðd2
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���
i;j

þOðh4; k4Þ;
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dnw�

h2

6

1

a
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ndgwÞ � ðdnbÞðd2

gwÞ
���

�bðdnd
2
gwÞ � ðdncÞðdnwÞ � ðdndÞðdgwÞ � pðdnwÞ � wðdnpÞ

���
þ
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J
dgw�

k2

6

1

b

�
dgf � ðdgbþ dÞðd2

gwÞ � ðdgg þ cÞðdndgwÞ � gðdnd
2
gwÞ � ðdgaÞðd2

nwÞ
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�aðd2
ndgwÞ � ðdgcÞðdnwÞ � ðdgdÞðdgwÞ � pðdgwÞ � wðdgpÞ

����
i;j

þOðh4; k4Þ;

ð19Þ
where the expressions for a, b, c, d, g can be calculated from (11), and p and f are the transformed coefficients
of x and h respectively in n–g plane when the transformed equation of (6) acts as Eq. (10). This completes one
outer iteration cycle. We utilize a relaxation parameter � for the inner iteration cycles for both f and w. For
larger values of Reynolds number, we need smaller values of �. All of our computations were carried out on a
Pentium 4 based PC with 512 MB RAM.
4. Numerical test cases

In order to study the validity and effectiveness of the proposed scheme, it is applied to three unsteady 2D
problems. These are (i) the flow decayed by viscosity, (ii) the lid-driven cavity flow and (iii) the flow in a con-
stricted channel. Problem (i) has analytical solutions, so Dirichlet boundary conditions are used for it while for
the remaining two, we use both Dirichlet and Neumann boundary conditions. For the first problem, we use
exact initial data; for the other two, steady-state solution is computed in a time-marching fashion, and zero
initial data was used in all the computations.
4.1. Test case 1

Firstly we consider the problem of flow decayed by viscosity [10,21,41,44] governed by Eqs. (1)–(3) in the
square 0 6 x, y 6 p with the following initial conditions
uðx; y; 0Þ ¼ � cosðxÞ sinðyÞ and vðx; y; 0Þ ¼ sinðxÞ cosðyÞ: ð20Þ

The exact solution of this problem is given by
uðx; y; tÞ ¼ � cosðxÞ sinðyÞe�2t
Re and vðx; y; tÞ ¼ sinðxÞ cosðyÞe�2t

Re: ð21Þ

The initial and boundary conditions for the w–f formulations of these equations can be easily derived from the
exact solution.

As the flow is characterized by a number of free shear layers, in order to resolve the flow accurately, we
have generated the grid in such a way (see Fig. 2) that maximum number of points gets allocated to those
regions. To generate the grid we have used the following stretching functions:
x ¼ n� k
4

sinð4nÞ; y ¼ g� k
4

sinð4gÞ:



Fig. 2. For problem 1: 41 · 41 grids: (a) physical plane (k = 0.5) and (b) computational plane.
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Here, the parameter k 2 [0, 1) determines the degree of clustering; note that a larger value of k indicates
more grid points at specified locations. The stretching functions generate a centro-symmetric distribution of
points with clustering in the vicinity of the horizontal and vertical centerlines.

We present our results computed on different grid sizes for different Reynolds number in Tables 1, 2 and

Fig. 3. In Table 1(a), we show the values of w, f for time t = 1.0 and 10.0 at the point p
4 ;

p
10

� 	
, whereas Table

1(b) shows variation in u and v with respect to time (t). It is obvious from the table that our numerical results
are grid independent and they are in excellent agreement with the analytical ones. In Fig. 3(a) and (b), we show
the numerical and analytical streamlines for Re = 1000 on a 81 · 81 grid and Fig. 3(c) and (d) show the cor-
responding vorticity contours at time t = 10.0 for the same Reynolds number. All these figures indicate a very
close match of the numerical solutions with the exact ones including excellent resolution of the shear layers. In
Table 2, we present the maximum absolute errors of w, f, u and v for Re = 100 on three different grid sizes
21 · 21, 41 · 41 and 81 · 81 at t = 10.0. This table clearly demonstrates that with grid refinement, the error
decays with O(h4) as expected.
Table 1
Grid independence study for problem 1: numerical and exact values of w, f, u and v at the point ðp

4
; p

10
Þ for different Res at different time

stations t = 1, 10 and grid sizes with Dt = 0.01 and k = 0.5

t Re Stream-function (w) Exact Vorticity (f) Exact

21 · 21 41 · 41 81 · 81 21 · 21 41 · 41 81 · 81

(a)

1.0 100 0.680621 0.679970 0.679934 0.679932 1.361058 1.359910 1.359866 1.359864
400 0.691508 0.690313 0.690214 0.690208 1.385520 1.380628 1.380417 1.380416

1000 0.693919 0.692480 0.692296 0.692282 1.394472 1.385375 1.384579 1.384563
10.0 100 0.568445 0.567849 0.567815 0.567813 1.136711 1.135682 1.135630 1.135627

400 0.660942 0.659928 0.659811 0.659804 1.323536 1.319808 1.319613 1.319608
1000 0.681361 0.680119 0.679937 0.679918 1.368113 1.360586 1.359864 1.359837

Velocity (u) Velocity (v)

(b)

1.0 100 �0.129682 �0.134237 �0.134474 �0.134489 0.682061 0.680064 0.679940 0.679932
400 �0.128669 �0.135917 �0.136486 �0.136522 0.692395 0.690369 0.690219 0.690208

1000 �0.127638 �0.135865 �0.136851 �0.136932 0.694413 0.692454 0.692296 0.692282
10.0 100 �0.108007 �0.112084 �0.112299 �0.112312 0.569634 0.567926 0.567820 0.567813

400 �0.123506 �0.129804 �0.130466 �0.130508 0.661914 0.659969 0.659815 0.659804
1000 �0.126156 �0.133403 �0.134383 �0.134486 0.682178 0.680092 0.679935 0.679918



Table 2
Problem 1: maximum absolute errors and convergence rates of w, f, u and v for Re = 100 at two time stations t = 1 and t = 10 (Dt = 0.01
and k = 0.5)

t Grid w Rate (w)
Max (w)

(a)

1.0 21 · 21 1.367266(�3)
3.99

41 · 41 8.604717(�5)
4.04

81 · 81 5.222722(�6)

10.0 21 · 21 1.480007(�3)
3.99

41 · 41 9.345349(�5)
4.05

81 · 81 5.646347(�6)

f Rate (f)
(b) Max (f)

1.0 21 · 21 9.765736(�3)
3.89

41 · 41 6.572612(�4)
4.01

81 · 81 4.070853(�5)

10.0 21 · 21 1.150130(�2)
3.83

41 · 41 8.085744(�4)
4.02

81 · 81 4.990446(�5)

u Rate (u)
(c) Max (u)

1.0 21 · 21 2.185866(�2)
3.53

41 · 41 1.890278(�3)
3.83

81 · 81 1.328059(�4)

10.0 21 · 21 1.871943(�2)
3.55

41 · 41 1.596069(�3)
3.84

81 · 81 1.114534(�4)

v Rate (v)
(d) Max (v)

1.0 21 · 21 2.166603(�2)
3.53

41 · 41 1.877177(�3)
3.83

81 · 81 1.323446(�4)

10.0 21 · 21 1.812902(�2)
3.53

41 · 41 1.569013(�3)
3.83

81 · 81 1.105766(�4)
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Fig. 3. For problem 1, at t = 10, Re = 1000, (Dt = 0.01, k = 0.5), on grid size 81 · 81: streamlines (a) exact, (b) numerical, and vorticity
contours (c) exact, (d) numerical.
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4.2. Test case 2: The lid-driven square cavity problem

Next we consider the classical 2D lid-driven square cavity problem. This problem, over the years, has
become the most frequently used benchmark problem for the assessment of numerical methods, particularly
the steady-state solution of incompressible fluid flows governed by the N–S equations [4,5,7,13,19,
20,24,25,37,43]. This problem is of great scientific interest because it displays almost all fluid mechanical phe-
nomena [14,35,38] for incompressible viscous flows in the simplest of geometrical settings. The geometry and
the boundary conditions have been shown in Fig. 4 where the top wall is moving and the remaining three walls
are stationary. No-slip boundary conditions have been employed on all the four walls. The moving wall gen-
erates vorticity which diffuses inside the cavity and this diffusion is the driving mechanism of the flow. At high
Res, several secondary and tertiary vortices begin to appear, whose characteristics depend on the Re. Because
of the presence of large gradients near the walls, we generate a centro-symmetric grid (see the physical plane in
Fig. 5(a) and the corresponding uniform grid in the computational plane in 5(b)) with clustering near the walls
using the stretching functions
x ¼ n� k
2p

sinð2pnÞ; ð22Þ

y ¼ g� k
2p

sinð2pgÞ; ð23Þ
where k is the stretching parameter with 0 6 k < 1, as defined in problem 1.
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Fig. 4. The lid-driven cavity flow configuration with boundary conditions.

Fig. 5. The lid-driven square cavity flow problem, a typical 41 · 41 grid: (a) physical plane (k = 0.6) and (b) computational plane.
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4.2.1. Boundary conditions

Boundary conditions for velocity on the top wall is given by u = 1, v = 0. On all other walls of the cavity the
velocities are zero (u = v = 0). In the w–f setting used here, streamfunction values on all the four walls are zero
(w = 0).
Table 3
Lid-driven cavity flow problem: effect of the stretching parameter for Re = 400 on a 41 · 41 grid

k Present Reference (Ghia et al.)

wmin f(0.5,1) wmin f(0.5,1)

0.6 �0.112 �9.99162 �0.114 �10.0545
0.7 �0.111 �9.96032
0.8 �0.110 �9.89285
0.9 �0.108 �9.64820
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We now proceed to develop HOC wall boundary conditions for vorticity f in the following manner:
In the physical plane, the velocity on the left wall, where the index for x-direction is 0 and j is the y-direction

index varying from 0 to ymax, on using forward difference, we have
Table
Lid-dr

Re

100

1000

Table
Steady

Re

100

400

1000

2000

3200

5000
v0;j ¼ �
ow
ox






0;j

¼ �dþx w0;j þ
Dx
2

o2w
ox2






0;j

þ ðDxÞ2

6

o3w
ox3






0;j

þOððDxÞ3Þ; ð24Þ
where Dx is the distance between the left wall and the first point closest to it in the physical plane. Using the

fact that
o

2w
oy2
¼ 0 on a vertical wall, from the Poisson Eq. (6), we have
o2w
ox2






0;j

¼ �f0;j;
o3w
ox3






0;j

¼ �of
ox






0;j

¼ � 1

xn
dþn f0;j: ð24aÞ
4
iven cavity flow problem: grid independence study of the steady-state data at the center of the cavity

Present Reference

Grid Velocity w f Grid Velocity f

u v u v

21 �0.20424 0.05489 �0.06468 �1.12383 129 �0.20581 [13] 0.05454 [13] –
31 �0.20690 0.05636 �0.06566 �1.15113 – – – –
41 �0.20785 0.05688 �0.06600 �1.16012 – – – –
61 �0.20851 0.05729 �0.06619 �1.16404 – – – –
81 �0.20882 0.05738 �0.06641 �1.17101 89 – – �1.17442 [31]
41 �0.07180 0.02810 �0.10858 �2.01270 – – – –
61 �0.06469 0.02638 �0.11463 �2.05634 – – – –
81 �0.06304 0.02600 �0.11585 �2.06441 – – – –

101 �0.06253 0.02587 �0.11622 �2.06661 160 �0.06206 [5] 0.02578 [5] �2.06722 [5]
121 �0.06189 0.02582 �0.11587 �2.05344 – – – –

5
-state primary vortex data for the lid-driven cavity flow for 100 6 Re 6 5000

Variables Ghia et al. [13] (1982) Kim and Moin [24] (1985) Bruneau and Saad [7] (2005) Present (k = 0.6)

wmin �0.103 �0.103 �0.103
fv,c �3.166 �3.177 – �3.1397
x, y (0.6172,0.7344) – – (0.6183,0.7273)
Grid 129 · 129 65 · 65 – 41 · 41
wmin �0.114 �0.112 – �0.1135
fv,c �2.295 �2.260 – �2.2920
x, y (0.5547,0.6055) – – (0.5532,0.6055)
Grid 257 · 257 65 · 65 – 61 · 61
wmin �0.118 �0.116 �0.1189 �0.1183
fv,c �2.050 �2.026 �2.0674 �2.0659
x, y (0.5313,0.5625) – (0.5313,0.5654) (0.5399,0.5598)
Grid 129 · 129 97 · 97 1024 · 1024 81 · 81
wmin – – – �0.1182

– – – (�0.120) [17]
fv,c – – – �1.9453
x, y – – – (0.5200,0.5598)
Grid – – – 81 · 81
wmin �0.120 �0.115 – �0.1193
fv,c �1.989 �1.901 – �1.9399
x, y (0.5165,0.5469) – – (0.5160,0.5479)
Grid 129 · 129 97 · 97 – 101 · 101
wmin �0.119 �0.112 �0.1219 �0.1204
fv,c �1.860 �1.812 �1.9322 �1.9708
x, y (0.5117,0.5352) (0.5147,0.5352) (0.5133,0.5399)
Grid 257 · 257 97 · 97 1024 · 1024 121 · 121
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Using the above results and v0,j = 0 (as the vertical velocity on the left wall is zero) with
Dx = xndn + xgdg = hxn ({ xg = 0, dn = h in the computational plane), (24) can be written in the computa-
tional plane as
Table
Steady

Vortex

Second

TL

BL

BR

Tertiar

BL

Tertiar

BR

Grid S

Ghia e

*Brune
6
-state secondary and tertiary vortex data for the lid-driven cavity flow for 100 6 Re 6 5000

Property Re

100 400 1000 3200 5000

ary wmax – – – 5.91e�4 1.27e�3

– – – (7.28e�4) (1.46e�3)
Location x,y – – – 0.0491,0.8988 0.0624,0.9101

– – – (0.0547,0.8984) (0.0625,0.9125)
HL – – – 0.0838 0.1153

– – – (0.0859) (0.1211)
VL – – – 0.2054 0.2678

– – – (0.2057) (0.2693)

wmax 2.06e�6 1.37e�5 2.12e�4 8.92e�4 1.23e�3
(1.75e�6) (1.42e�5) (2.31e�4) (9.78e�4) (1.36e�3)

Location x,y 0.0316, 0.0316 0.0528, 0.0439 0.0840, 0.0727 0.0794, 0.1175 0.0727, 0.1384
(0.0313,0.0391) (0.0508,0.0469) (0.0859,0.0781) (0.0859,0.1094) (0.0703,0.1367)

HL 0.0834 0.1301 0.2288 0.3002 0.3310
(0.0781) (0.1273) (0.2188) (0.2844) (0.3184)

VL 0.0835 0.1093 0.1665 0.2462 0.2840
(0.0781) (0.1081) (0.1680) (0.2305) (0.2643)

wmax 1.22e�5 6.35e�4 1.75e�3 2.85e�3 3.16e�3
(1.73e�3)* (3.07e�3)*

(1.25e�5) (6.42e�4) (1.75e�3) (3.14e�3) (3.08e�3)
Location x,y 0.9526, 0.0638 0.8908, 0.1233 0.8616, 0.1092 0.8247, 0.0863 0.8005, 0.0782

(0.8643,0.1123)* (0.8057,0.0732)*

(0.9453,0.0625) (0.8906,0.1250) (0.8594,0.1094) (0.8125,0.0859) (0.8086,0.0742)
HL 0.1334 0.2723 0.3191 0.3589 0.3816

(0.1328) (0.2617) (0.3034) (0.3406) (0.3565)
VL 0.1612 0.3193 0.3685 0.4204 0.4457

(0.1484) (0.3203) (0.3536) (0.4102) (0.4180)

y wmin – – �5.87e�8 �2.16e�8

– – – (�6.33e�8) (�7.08e�8)
Location x,y – – 0.0059, 0.0060 0.0080, 0.0080 0.0060, 0.0080

– – – (0.0078,0.0078) (0.0117,0.0078)
HL – – 0.0156 0.0168 0.0152

– – – (0.0254) (0.0156)
VL – – 0.0175 0.0160 0.0165

– – – (0.0234) (0.0163)

y wmin �1.25e�9 �4.81e�8 �1.10e�7 �2.77e�7 �1.26e�6

– (�8.91e�8) (�9.32e�8) (�2.52e�7) (�1.46e�6)
Location x,y 0.9974,0.0057 0.9933, 0.0067 0.9933, 0.0067 0.9879, 0.0121 0.9795, 0.0170

(0.9922,0.0078) (0.9922,0.0078) (0.9844,0.0078) (0.9805,0.0195)
HL 0.0081 0.0152 0.0078 0.0240 0.0559

– (0.0156) (0.0078) (0.0254) (0.0528)
VL 0.0075 0.0156 0.0087 0.0226 0.0448

– (0.0156) (0.0078) (0.0234) (0.0417)

ize (present) 41 · 41 61 · 61 61 · 61 101 · 101 121 · 121

t al. (129 · 129) (257 · 257) (129 · 129) (129 · 129) (257 · 257)

au and Saad – – – (1024 · 1024) – (1024 · 1024)
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0 ¼ � 1

xn
dþn w0;j �

1

2
hxnf0;j �

1

6
h2xnd

þ
n f0;j þOðh3Þ: ð25Þ
Vorticity at the left wall (f0,j) can be easily obtained from Eq. (25). The vorticity at the other boundaries can
be approximated in a similar way.

We now present the transient and the time-marching steady-state solutions produced by the proposed
scheme for this problem in Tables 3–7 and Figs. 6–14. Table 3 shows the effect of the stretching parameter
k where it is seen that with increasing k, the minimum streamfunction value and the vorticity at the mid-point
of the moving wall deviate from the benchmark results of reference [13]. This is due to the fact that severe
clustering at the walls takes away some significant points from the interior and high-gradient vorticity regions
are not necessarily aligned to the walls [13]. Therefore, for most of the computations for this problem, we have
used k = 0.6. Fig. 6 shows the good effects of clustering: Fig. 6(a) and (b) respectively show computed steady-
7
rgence data and relaxation parameter for the lid-driven square cavity problem on a 61 · 61 grid in a PC with Pentium 4 processor
2 MB RAM

CPU (s) Relaxation parameter (inner (f), inner (w))

116.585 (64.926) (0.725,0.9)
261.197 (126.972) (0.425,0.625)
782.034 (372.254) (0.5,0.6)

The lid-driven square cavity flow problem, Re = 100: streamlines computed on a 11 · 11 grid with (a) the present scheme (k = 0.7),
f. [40]; appearance of tertiary vortex on a 21 · 21 grid (k = 0.95): (c) bottom left and (d) bottom right.
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state streamlines for Re = 100 on clustered non-uniform (k = 0.7) and a uniform 11 · 11 grid. It is clear that
without clustering the vicinity of the walls, a uniform grid cannot produce the secondary corner vortices at the
bottom. Likewise Fig. 6(c) and (d) show the bottom left and bottom right corners of the cavity, where a grid as
coarse as 21 · 21 was able to resolve even the tertiary vortices for this Reynolds number.

In Fig. 7, we present comparisons of the horizontal velocities on the vertical centerline and the vertical
velocities on the horizontal centerline of the square cavity for Reynolds numbers ranging from 100 to 5000
and compare our data with those of Ghia et al. [13]. While the data for [13] was obtained using 129 · 129
and 257 · 257 grids, our data is obtained using a 21 · 21 grid (Re = 100), a 41 · 41 grid (Re = 400), a
81 · 81 grid (Re = 1000), 101 · 101 grid (Re = 3200) and a 121 · 121 grid (Re = 5000). In each case, our veloc-
ity profiles exhibit a perfect match with Ghia’s results.

In Fig. 8, we compare our data of the horizontal vorticities along the vertical centerline and the vertical vor-
ticities along the horizontal centerline of the square cavity on a grid 61 · 61 for Reynolds number 1000 with those
of [7] on a grid 1024 · 1024. Bruneau and Saad have used 1024 · 1024 grid for Re = 1000, whereas same results
are reproduced by the proposed scheme on a grid as coarse as 61 · 61. The close agreement revealed between
these two results indicates that the present scheme is much more superior than some recent schemes [22,26,28].

In Fig. 9, we exhibit the well known streamlines for 100 6 Re 6 5000 while Fig. 10 contains the correspond-
ing vorticity contours. All of these graphs exhibit the typical separations and secondary vortices at the bottom
corners of the cavity as well as at the top left of the square cavity.
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Fig. 7. The lid-driven square cavity flow problem: comparison of steady-state (a) horizontal velocity along the vertical centerline and
(b) vertical velocity along the horizontal centerline from Re = 100 to Re = 5000.
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In Table 4, we present our grid independence data for u, v, w and f for Re = 100 and 1000, and compare
them with those of Refs. [5,13,31]. Table 5 compares our primary vortex data for 100 6 Re 6 5000 with the
benchmark results of [13] as well as other published results [7,17,24]. In Table 6, we provide the secondary and
tertiary vortex data for the same range of Reynolds numbers and compare them with those of [7,13] (values
given within parentheses). In all cases our results exhibit an excellent match with all the references cited above.

In Figs. 11 and 12, we show the time-wise evolution of the streamlines for Re = 1000 and 3200 till the
steady-state is reached (on a 81 · 81 and 101 · 101 grid respectively). These figures show that our scheme
excellently captures the formation of the secondary and tertiary vortices as time progresses. In a similar note,
the adjacent tables show the time evolution of the w–f data at different time stations for Re = 1000 and 3200
respectively on a 81 · 81 and 101 · 101 grid. We have compared the transient data presented in Fig. 11 with
the same given in [11].

Figs. 13 and 14 respectively show the horizontal velocity along the vertical centerline and vertical velocity
along the horizontal centerline at instant t = 20.0 captured with three different time steps Dt = 0.05, 0.01 and
0.001 for Re = 5000. These profiles captured on a grid of size 121 · 121 clearly exemplifies the good effects of
the implicitness of our scheme which allows time step as coarse as Dt = 0.05 to achieve time-grid-independence
(hence time-accuracy).
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In Table 7, we present the convergence data (and CPU time) on a 61 · 61 grid till steady-state where steady-
state was assumed to reach when
max jfðnþ1Þ � fðnÞj < 5� 10�6:
Here, f(n+1) and f(n) stand for solutions at (n + 1)th and nth time steps respectively and we have used the com-
puted solution for a lower Re as the initial guess for a higher Re. We also compare our CPU times with that for
the scheme presented in [19], which used direct discretization on a uniform Cartesian grid. Although the CPU
time taken by our scheme is more than the CPU time taken for direct discretization on a uniform Cartesian
grid (presented here within parentheses), our scheme has the advantage of working equally well in domains
beyond rectangular whereas the scheme in [19] is limited to rectangular domain only. It is worthwhile mention-
ing that coarser uniform grid used in [19] could not capture the flow patterns for higher Res accurately.

4.3. Test case 3: Constricted channel

A classic problem for studying the flow past a re-entrant corner is the flow in a non-uniform channel con-
taining a step-down constriction [6,33,34] (see Fig. 15) in which the shape of the channel boundary can vary
from a smooth constriction (Fig. 16(a)) to one with a very sharp but smooth corner (Fig. 16(b)). At such a
corner the flow becomes singular and in particular, vorticity becomes infinite [33]. For accurate resolution
of the flow at this location, the downstream requires more grid refinement compared to the upstream. We con-
struct such a grid using the conformal mapping [33,34]:
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z ¼ wðAþ B tanhðwÞÞ; ð26Þ

where z = x + iy and w ¼ nþ ig ði ¼

ffiffiffiffiffiffiffi
�1
p

Þ with
x ¼ Anþ B
H
½n sinhð2nÞ � g sinð2gÞ�; ð27Þ

y ¼ Agþ B
H
½g sinhð2nÞ þ n sinð2gÞ�: ð28Þ
Here, H = cosh(2n) + cos(2g); A and B are constants defined by A ¼ li þ lo

2s
, B ¼ lo � li

2s
where 2li, 2lo respec-

tively are the inlet and outlet heights of the constricted channel and s is a parameter controlling smoothness as
well as sharpness of the constriction: an increasing value of s indicating a more sharp corner. In the present
computation, we have taken li = 1 and lo = 0.5.

The flow here is axisymmetric and the governing equations are as given in (6) and (7). It is well known that
the choice of the inlet and outlet boundary locations affects the behaviour of flow. We made a few test runs to
determine the optimal inlet (and outlet) distance from the throat such that the throat effect becomes negligible
at the inlet (and outlet). Eventually, we have fixed the distance of the inlet boundary at x = �15 and the outlet
boundary at x = 25.

We introduce a Poiseuille profile at the inlet and fully developed flow conditions at the outlet. We also use
no-slip conditions at the upper wall which translate to wg = 0 and w = constant (which is taken as 1 here) in
the computational plane; at the central line w = 0, f = 0.
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As no analytical solution exists for the problem, in order to estimate the grid convergence rate for this prob-
lem, we compute the steady-state solution on three different grid sizes 161 · 16, 321 · 31 and 641 · 61 (denoted
by C, M and F respectively). Then the formula for grid convergence rate of a variable / (which represents u, v,
w or f here) is
aR ¼
lnððk/M � /Ck1Þ=ðk/

F � /Mk1ÞÞ
ln 2

; ð29Þ
where
k/F � /Mk1 ¼ max
i;j
j/F

i;j � /M
i;jj: ð30Þ
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We present these results in Table 8 for three Reynolds numbers, namely, 1, 10, 100. All the flow vari-
ables show approximately a fourth order grid convergence as expected. We have compared our com-
puted grid convergence rate based on maximum error with those in [34] (presented here within
parentheses).

For this problem, there is no quantitative results available in the existing literature. Therefore we com-
pare our qualitative results, namely the streamfunction contours with those obtained by Mancera. Our
streamline patterns are very similar to those in [33,34]. In Fig. 16(a) and (b), we show the grids used
for s = 0.6 and 1.0 respectively. Fig. 17(a) and (b) respectively show the streamlines for Reynolds num-
bers 500 and 750 in the channel with s = 0.6 whereas Fig. 17(c) and (d) show the same for Reynolds
numbers 250 and 500 with s = 1.0. One can see from the last two figures that even for lower Reynolds
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numbers typical flow separation occurs for higher values of s. These figures also show that the size and
strength of the vortex in the region just after the corner increase with increasing Res. It is heartening to
note that the scheme in [34] could not achieve a converged solution for Re = 500, and s = 1.0 whereas
our computation produces a well converged solution for the same Re.
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Table 8
Error analysis of the constricted channel flow problem for different Res (s = 0.6)

Re Errors Rate

i/M � /Ci1 i/F � /Mi1

1.0 w 1.705187e�03 1.111000e�04 3.94
f 1.124975e�02 7.101000e�04 3.43
u 2.822500e�03 7.080000e�04 3.99
v 3.531502e�03 2.238000e�04 3.98

10.0 w 3.060635e�03 2.008000e�04 3.93 (3.60 [34])
f 2.208857e�02 1.371000e�03 4.01 (3.75 [34])
u 1.892129e�02 1.232800e�03 3.94
v 1.216307e�02 7.870000e�04 3.95

100.0 w 8.086469e�03 6.353000e�04 3.67 (1.48 [34])
f 4.897917e�02 2.998200e�03 4.03 (3.69 [34])
u 8.545852e�02 7.047700e�03 3.60
v 5.004434e�02 4.070300e�03 3.62
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5. Conclusions

In this paper, we introduce a new HOC formulation for solving unsteady incompressible viscous flow
problems in 2D governed by the N–S equations on non-rectangular physical domains on orthogonal grids.
Our scheme is implicit, second order accurate in time and fourth order accurate in space. Both Dirichlet and
Neumann boundary conditions can be easily incorporated into the scheme. The use of BiCGStab algorithm
for solving the algebraic systems arising at every time level, makes the implicit procedure computationally
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efficient even in capturing transient solutions. Since the proposed scheme is higher order accurate, it
demands lesser number of grid points than other popular schemes to reach the desired accuracy. To bring
out different aspects of the scheme, we employed it to compute the transient solutions of the flow decayed
by viscosity, the time-marching steady-state solution of the 2D lid-driven cavity flow and more importantly,
to the constricted channel flow problem. We have addressed several issues relating to the use of HOC
schemes on stretched, rectangular and curvilinear meshes. Our scheme can be used for curvilinear coordi-
nates also. The robustness of the scheme is illustrated by its applicability to problems of varying physical
complexities, represented among others, by Reynolds numbers ranging from 100 to 5000 in the cavity prob-
lem and 1 to 750 in the channel problem. The results obtained in all the test cases on relatively coarser grids
are in excellent agreement with the analytical as well as the established numerical results, underlining the
high accuracy of the scheme. The implicit nature of the scheme is fully exploited in arriving at the
steady-state results for the lid-driven cavity and the constricted channel problem, where time-steps as high
as 0.1 have been employed for some of the computations. The strength of the scheme can be easily realized
from the fact that on non-uniform 11 · 11 grids the secondary and on 21 · 21 grids the tertiary vortices can
be clearly visualized even for Re = 100. As our scheme has the added advantage of being applicable to non-
rectangular physical domains, it has very good potential for efficient computation of incompressible viscous
flows on complex geometries.
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